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Ll NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2411

METHOD OF DETERMINING INITIAL TANGENTS OF CONTOURS OF
FLOW VARTABLES BEHIND A CURVED, AXTAILY
SYMMETRIC SHOCK WAVE

By George P. Wood and Paul B. Gooderum

SUMMARY

[

A general method for calculating the initial tangents of contours
of constant density, pressure, and Mach number behind a curved, axially
symmetric shock wave has been derived. Initial tangents of density con-

- tours are obtained that fair well into contours determined from inter-
ferograms for the flow about a sphere at Mach number 1.62. Streamlines
and contours of constant Mach number throughout this flow field have

- also been deduced from contours of constant density obtained by inter-
ferometry. The flow field obtained from the shock wave by the method
of characteristics is compared with that obtained by interferometry.

INTRODUCTION

Various phases of the problem of flows behind curved shock waves
have been treated theoretically by many investigators. Crocco, in a
pioneer paper (reference 1), investigated two-dimensional flow behind
a curved attached shock wave. Significant contributions were made later
by Maccoll, Drougge, and Guderley. Maccoll (reference 2) calculated
the flow around various bodies with detached shock waves at near-sonic
velocities. Drougge (reference 3) calculated the pressure distribution
on conical tips with detached shock waves. Guderley (reference 4)
investigated the transition between flow with a detached shock wave and
flow with an attached shock wave. Thomas, in a series of papers of
which reference 5 is representative, considered the curvature of attached
shock waves and the pressure distribution on bodies behind attached shock
waves. Lin and Rubinov (reference 6) obtained general relations for flow
behind curved shock waves and developed a method for calculating the sub-
sonic flow between the shock wave and the body. This method was applied
by Dugundji (reference T) to calculate the pressure distribution along
the axis between a sphere and a shock wave. Busemann (reference 8)
" reviewed analytical methods for the treatment of two-dimensional flows

with detached shock waves and discussed the main features of mixed
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subsonic and supersonic flows. Ferri (reference 9) presented a method
for obtaining the pressure drag in two-dimensional or axially symmetric
flow behind a detached shock wave when the location and shape of the
shock wave are known. Moeckel (reference 10) gave an approximate method
for predicting the form and the location of detached shock waves.

Experimental investigations of the flow behind curved shock waves
include the investigation by Ladenburg, Van Voorhis, and Winckler
(reference 11) who determined the density contours around various axi-
ally symmetric bodies at Mach number 1.7. The present authors in refer-
ence 12 presented data on the shape and location of detached shock waves
on cones and spheres over a range of Mach numbers from 1.17 to 1.81. 1In
reference 13 interferograms of the flow around a sphere at Mach num-
bers 1.30 and 1.62 were evaluated; the contours of constant density
ratio in the flow fleld around the sphere were determined. However, the
initial tangents of the density contours could not be obtained accu-
rately from the interferogram by the method of analyzing interferograms
that was used in reference 13.

The purpose of the present paper is to present a method for calcu-
lating the initial tangents of the contours of flow variables immedi-
ately behind a curved, axially symmetric shock wave when the location
and shape of the shock wave are known. This method was used in the
present paper to obtain the initial tangents of the density contours in
the flow field around a sphere at Mach number 1.62. Streamlines and
contours of constant Mach number in the flow behind the shock wave have
also been obtsined from the density contours of reference 13, The flow
field in part of the supersonic region behind the shock wave has been
computed by the method of characteristics (reference 14) and the results
compared with those obtained from the interferogram.

SYMBOLS
a veloclty of sound
A cross-sectional area
b coordinate in plane of binormal
Cp specific heat at constant pressure
Cvy specific heat at constant volume

D diameter of sphere
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F distance to focus of streamline directions due to curvature
of shock wave

log logarithm to base e

M Mach number

n coordinate normal to direction of streamline

P pressure

R radius of curvature of streamline

Rvw radius of curvature of shock wave

.S entropy

A8 change in entropy (S - SQ)

t coordinate tangential to direction of streamline

T total taper distance of element of stream tube

Ty taper distance of element of stream tube in plane of
binormal

Tn taper distance of element of stream tube in plane of
normal

Vv velocity

b 4 coordinate in direction of axis of symmetry

N coordinate normal to axis of symmetry

V4 ratio of specific heats (ép/cv)

® angle of deviation of flow across shock wave

€ angle of shock wave

oM angle between direction of x-axis and initial tangent of

contour of constant Mach number

fp angle between direction of x-axis and initial tangent of
contour of constant pressure
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fp angle between direction of x-axis and initial tangent of
contour of constant density

IT ratio of stagnation pressures (ps/PsO>
P density
o] coordinate along shock wave
Subscripts:
s stagnation
0 free stream
SHOCK WAVE

In order to apply the method of calculating the initial tangents,
that is developed in the present paper, the location of the shock wave
and the variation along the shock wave of both the slope and the radius
of curvature along the shock wave mist be known. When the location and
the slope variation of the shock wave are known, the streamlines can be
obtained and the method of characteristics can be used to determine the
flow field. The present section, therefore, is a discussion of the shock
wave, its first and second derivatives, and its radius of curvature.

Figure 1, which is taken from figure 4(b) of reference 13, 1is the
interferogram from which the coordinates of the bow shock wave and the
other experimental results are obtained. This interferogram shows the
flow about a sphere at a free-stream Mach number of 1.62. The free-
stream stagnation temperature was 533.1° F absolute, and the free-stream
density was 0.003501 slug per cubic foot. The rim shock wave from the
edge of the nozzle is shown in the upper left-hand corner of the inter-
ferogram. This shock wave is very week, as the fringe displacement
across the shock wave 1s very small and the shock wave lles within 1°
of the Mach angle. Because of the rim shock wave, however, and the near-
ness of the edge of the jet, the portion of the bow wave of the sphere
between the rim shock wave and the edge of the jet was considered to be
not sufficiently accurate and was not used (except for calculating one
of the initial tangents; namely, the contour of constant density ratio
of 1.5). The location of the portion of the bow shock wave between the
rim shock wave and a position near the axis of symmetry was carefully
measured and is shown in figure 2, where y 1is the normal distance from
the axis of symmetry, x 1is the distance along the axis from the inter-
section of the shock wave and the axis, and D 1is the diameter of the
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sphere. Because of the difficulty of making very accurate measurements
near the axis where the slope of the shock wave is very large, the part
of the shock wave near the axis has been shown as a dashed line.

The variation of the slope of the shock wave is given in figure 3.
This curve was obtained by first reading y at values of x that
increased by steps of 0.1, and then determining Ay, the increment in y
for the given increment Ax in x. Next Ax/Ay was plotted against y.
The value of x was computed by finding the area under each small por-
tion of the curve. If the value of x so obtained checked closely with
the measured value of x, within approximately one part in a thousand,
then the curve of Ax/Ay was taken to be correct. If the check was not
close, the curve was refaired until a close check was obtained. Then
points were read from the curve of Ax/Ay and were used for plotting
the curve of dy/dx shown in figure 3.

The variation of d?y/dx2 was obtained in a similar manner. The

quantity X was plotted against &y and the curve was refaired
Aoy /ox) Ax
until integration gave the original value of x githin approximately

three parts in a thousand. The variation of - &y D with % is

shown in figure 4.

From the variation of the first and the second derivatives, the
variation of the radius of curvature of the shock wave was calculated.
The radius of curvature obtained by this method, however, is not very
accurate. Errors in the location and in the slope of the shock wave are
magnified in the second derivative and, therefore, in the radius of curva-
ture. In order to reduce the uncertainty in the radius, the shock wave
on the other side of the axis (most of which is not shown in fig. 1, but
which is included in the original interferogram from which fig. 1 was
taken) was measured and its derivative and radius were calculated and
plotted. The radlus agreed fairly well with that obtained for the other
side of the axis. Furthermore, with a mechanical device and a very large
reproduction of the interferogram, the normals to the shock wave, the
-envelope of the normals, and ther the variation of the radius of curva-
ture along the shock wave were obtained. These results agreed rather
well with the calculated values. A curve showing the variation of the
radius of curvature along the shock wave that results from fairing
through the measured points and the calculated points on both sides of
the axis is given in figure 5.
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RESULTS AND DISCUSSION

Initial Tangents of Contours of Flow Variables

In reference 13 the interferogram of figure 1 was analyzed to
obtain the contours of constant density behind the shock wave. These
contours are shown in figure 6, which 1s taken from figure 5(b) of
reference 13. As was explained in reference 13, the analysis did not
give accurately the contours in the region immediately behind the shock
wave. For that reason there was a gap in figure 6 between the beginning
of each contour and the known theoretical point where the shock wave and
the contour should intersect. The purpose of the present section is to
fill in these gaps by giving the theoretical values of the tangents of

the contours at the shock wave.

The analysis for finding the initial tangents of the flow vari-
ables is given in detail in appendix A; however, the method is
described briefly in the present section. The pressure immediately
behind a curved shock wave varies along the shock wave. The rate of
variation is obtained by differentiating along the shock wave the well-
known equation for the pressure ratio across an oblique shock wave. The
general rate of pressure change in any direction at any place in the
flow field - including the one along a shock wave - may be represented
by the two basic pressure derivatives, namely, in the direction of the
tangent to the stream tube and in the direction of the normal to the
stream tube. Therefore, the rate of pressure change along the shock

wave is (appendix A)

d log p 0 log p . o log p
08P -3) —= £ 4 € - B) ——= 1
r cos (e ) v sin( ) - (1)

Equation (1), with known values of €, 3, and 2_&95_2, is one rela-

tion between the two pressure derivatives. Another relation is also
needed.

The tangential rate of change of pressure results from the tangen-
tial rate of change of velocity that is necessary to meet the require-
ment of continuity when there is a change in the cross-sectional area
of the flow, and is given by Newton's second law of motion as

—_— = -pV —
ot ot
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or
0 log p _ yM2 D log A (2)
ot 1 - M ot

The other basic rate of change is normal to the flow and balances the
centrifugal force

on R
or
o0 log p _ yMP
logp 2N 3)

An equation that relates the two pressure derivatives can be
obtained from equations (2) and (3) by finding the relation between
é—%%gaé and R, as follows: At every point on the shock wave, the

local slope of the shock wave determines the initial streamline direc-
tion behind the shock wave. Inasmuch as there is always a point at the
shock wave where the streamlines have no initial curvature, that point
may be used for orientation, and the initial tangents of the streamlines
may be considered rather than the streamlines themselves. Because the
shock wave is curved, successive initial tangents of the streamlines
behind the shock wave are not parallel and, therefore, if extended, con-
verge to a focus (or in larger extent to an envelope) in the focal dis-
tance F (fig. 7). If the streamlines were straight, the focal dis-
tance F would determine the rate of change of cross-sectional area of
the stream tubes and the rate of pressure change along the stream tube.
Contours of constant pressure would be concentric circles around the
focus (or the evolutes of the envelope). Since the pressure at the
shock wave is known and since the entropy is known and is constant along
a stream tube, there are two independent ways of calculating the rate of
pressure change along the stream tube, one from the given pressure con-
tours and the other from continuity inside the stream tube. These two
methods, however, will agree for the tentatively straight streamlines
only when the curvature of the shock wave and the distance from the axis
of symmetry happen to have, fortuitously, the necessary values for agree-
ment. In all other cases, a finite initial curvature of the streamlines
has to modify the rate of change of area and to shift the contours of
constant pressure in such a way that the two methods give the same
result. In figure 8 the initial curvature of a streamline is indicated.
In appendix A the details are given of finding the relation between the
initial radius of curvature R of the streamline and the rate of change



8 NACA TN 2411

of area of the stream tube. This relation is then used with equa-
tions (2) and (3) to obtain the following equation between the two pres- v
sure derivatives:

0 logp_ -Mtan(e - B8) M - 13 logp ,8n 8, csc(e - 8) ® (%)
dn M d ¥ do

Equations (1) and (4) form a system of two equations in two
unknowns and can be solved for the unknowns, the pressure derivatives.
Then the effect of entropy variation along the shock wave can be taken
into account to obtain expressions for the density derivatives and the
Mach number (or temperature) derivatives.

When the two derivatives of a flow variable are known at a point -
on the shock wave in perpendicular directions, they can be added vecto-
rially to find the direction of the maximum rate of change of the vari-
able. Normal to that direction, then, is the direction of zero rate of =
change, which defines the tangent of the contour of constant value for
the variable under consideration.

The final results are given by the three following equations, in
which 6 1is the angle between the direction of the x-axis and the ini-
tial tangent of the contour of constant value of the variable indicated
by the subscript on 6 (the angle 6 is considered positive when meas-
ured counterclockwise from the direction of the x-axis):

By sin(e - 8) sin & + —— cot(e - &) QT%QE—B + %é
(ten 6, - B) _ v M2 ¢ €
tan(e - B)

§¥ sin(e - ®) sin & + ME—:—l tan(e - &) Q—EEE—B + L)

yMP o¢ de

(5)
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The tangents are also indicated in figure 6 by the short, straight lines
that have been drawn through the shock wave. The initial tangents given
by the analysis fit well between the experimentally determined contours

and the known points where the contours should intersect the shock wave.

Streamlines and Contours of Constant Mach Number Determined
from Density Contours

The only known quantity in the flow field behind the shock wave,
except at the shock wave and at the surface of the sphere, is the den-
sity, as given in figure 6. The values of the other state variables of
the gas are not immediately known because of the variation along the
shock wave of the entropy behind the shock wave. The streamlines, as
the contours of constant entropy, can be found, however, by a graphi-
cal method that is based on satisfying continuity along a stream tube.
The local cross-sectional area of a stream tube can be expressed, if
its entropy is given, in terms of known quantities in the free stream
and the local values of density and stagnation density. The first
stream tube 1s constructed by taking the axis and the surface of the
esphere as a streamline. Local values of density, as given by figure 6,
and the average value of stagnation density for the stream tube are used
to calculate local values of cross-sectional area. Then, adjacent
stream tubes are added in sequence. The method is described in detail

in appendix B.

From the steamlines and the density contours, the other flow vari-
ables can be found. In the present case, the contours of constant Mach
number were found. The results are shown in figure 9, where the density
contours taken from figure 6 are shown by the heavy solid lines, the
streamlines, by the light solid lines, and the calculated Mach number
contours, by the dashed lines.

Streamlines and Contours of Constant Density and Mach Number
Determined by Method of Characteristics

Contours of the flow variables in part of the flow field behind
the shock wave were calculated by the method of characteristics. The
part of the flow field for which results can be obtained is quite
limited in extent. The flow field is limited on one side by the sub-
sonic flow in front of the sphere and on the other side by the fact that
the location and shape of the bow shock wave are not known accurately
enough for use beyond the nozzle-rim shock wave. The method used was
that given by Ferri (reference 14). The only data needed for the calcu-
lations were the free-stream conditions, the coordinates of the shock
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wave (fig. 2), and the variation of the slope of the shock wave (fig. 3).
The calculations were made with the Bell Telephone Leboratories X-66Thk
relay computer at the Langley Laboratory. An attempt to obtain good
accuracy in the results was made by using fairly small increments

(Ay on the shock wave approximately equal to 0.0LD) to give a network
of characteristics that had a small mesh and by reiterating each step
of the process. The results are shown in figure 10. Contours of con-
stant ratio of density to free-steam density are shown in figure 10(a),
where the contours obtained by interferometry are also reproduced from
figure 6. Contours of constant Mach number are shown in figure 10(b),
which also shows the Mach number contours obtained by satisfying conti-
nuity, transferred from figure 9. Streamlines, or contours of constant
entropy, obtained by the method of characteristics are shown in fig-
ure 10(c), together with those taken from figure 9.

The contours obtained by the method of characteristics and the con-
tours obtained from the interferogram do not agree very well. Actually,
however, the agreement is perhaps as good as might be expected. 1In
deriving an axially symmetric flow field from experimental measurements,
results that have an extremely high degree of accuracy are difficult to
obtain. In the present case, the results obtained by the method of
characteristics have some small percentage of uncertainty because of the
finite size of the mesh of the characteristics network. The analysis of
an interferogram of axially symmetric flow must also be made very care-
fully in order to obtain results in which the uncertainty is very small.
In reference 13, from which the interferometric results were taken, the
estimate is made that the uncertainty in the location of any contour
does not exceed plus or minus approximately one-half the distance
between the adjacent contours. This amount of uncertainty, which is
only about 3 percent, is just about equal to the discrepancy between the
results obtained by the two methods.

The fact that the streamlines are straight in the only region of the
flow in which the method of characteristics could be applied is entirely
fortuitous in the sense that the curvature of the shock wave and the
distance to the axis for this region are such that the streamlines are
straight.

CONCLUDING REMARKS

A method of calculating the initial tangents of contours of con-
stant density, pressure, and Mach number at a curved symmetrical shock
wave has been derived. The method gives tangents of density contours
that fair well between the contours obtained by interferometry and the
known points of intersection on the shock wave.
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The streamlines of the flow about a sphere at Mach number 1.62 have
been deduced from experimentally determined density contours by satis-
fying the requirements of continuity along a stream tube.

Part of the flow field around the sphere was also obtainéd from a
knowledge of the shock wave by applying the method of characteristics.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., April 12, 1951
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APPENDIX A

CALCULATION OF INITIAL TANGENTS

OF CONTOURS OF FLOW VARIABLES

The problem is to find the tangents of the contours of constant
pressure, density, and Mach number immediately behind an axially sym-
metric curved shock wave. The solution given here was obtained by using
ideas and suggestions of Dr. A. Busemann of the Langley Laboratory.

A curved, axially symmetric shock wave in a uniform, steady, super-
sonic free steam is considered. The location of such a shock wave can,
because of axial symmetry, be completely given by two variables, and
the shock wave can be drawn as a curve in a meridian plane. The local
slope of the shock wave with respect to the free-stream direction of
flow, together with the state of the gas in the free stream, completely
determines the initial state of the gas and the initial tangent to the
direction of the streamline at any and every point on the downstream
side of the shock wave. In particular, the pressure is given by the
equation

2 X -1
%%.: > Z T M0251n2€ - ; T (Al)

Because the shock wave 1s curved, the local slope, the flow variables,
and the initial tangent to the streamlines vary along the shock wave.

In particular, the rate of change of pressure along the shock wave is

obtained from equation (Al) as

a log D _ gi 27}4025111 € COs € (A2)
do do 7MO2Sin2€ _ 2 5 1

Another way of viewing the pressure change along the shock wave is
the following: The rate of pressure change in any direction at any
point in a flow field - for example, along a shock wave - is the sum of
the components in that direction of the two basic rates of change. One
of these basic rates of pressure change lies in the directlon tangent
to the direction of flow. This tangential rate of change results from
any tangential rate of change of velocity that may be necessary to meet
the requirements of continuity when there is a change in the cross-
sectional area of the flow. It is given by Newton's second law of
motion as ’

St Vst
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By using the relations

w2 = v2 9P
dp
and
2
M2 = BV
7P

the equation can be written as

o log p _ 7M2 0 log A

A3)
ot 1 -M Ot (83)
The other basic rate of pressure change is normal to the flow

direction, balances centrifugal force, and is
o _o¥
on R
or
2
o) 1ng=_7M (Ah)
on R

At any point on the shock wave, the rate of change of pressure along the
downstream side of the shock wave is the sum of the components along the
shock wave of Op/dt and Op/dn, that {is,

108D _ o 0 log p ologp
— = cos(¢6 - ) >t + sin(e - 5) S (A5)

Another relation between é_%%E_E and é—%gg—g is needed. This rela-
) n

tion can be obtained by finding first a geometrical relation between

Q_%%g_é and R, the unknown factors in equations (A3) and (A4). Con-

sider first a section of the flow as seen in a meridian plane (fig. 7).
Because the shock wave is curved, the initial tangents to the stream-
lines behind the shock wave change along the shock wave. The initial
tangents, therefore, if extended, converge to an envelope or focus, in
the focal distance F. In the general case, the stream tube is not
identical with the extended initial tangents that converge in the dis-
tance F, since the stream tube is curved in the meridian plane. If,
however, the streamlines were straight, the distance F to the focus
would be one of the factors that determine the rate of change of area
of the stream tube, as this distance would define the taper of the
stream-tube area in the meridian plane. The taper of a stream tube as
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seen in a meridian plane is, however, not the only taper. Consider an
element of an annular axially symmetric stream tube as shown in fig-
ure 11. The cross-sectional area of the element is

dA = dn db

The element tapers not only in the meridian plane, which is the plane
of the normal, but also in the plane of the binormal. In other words,
both dn and db vary along the stream tube. The quantity db is
proportional to y as shown in figure 11. If the cross section under
consideration were moved away from the shock wave, y and db would
become larger. If the cross section were moved in the opposite direc-
tion, db would become smaller at a rate that would meke it vanish at
the axis of symmetry. The side of the element in the plane of the
binormal therefore would taper to an edge or focus at the axis in the

distance -Ty, = ET%;g'

The total taper of the element of stream tube is made up of the
components in the plane of the normal and in the plane of the binormal,
The total taper of the element could then be considered as having an
envelope distance T, and would be given by

L_1l,1 _ _ dA
T F Ty~ " Kat (86)

(where straight streamlines in the meridian plane are assumed).

If the local Mach number in the element of stream tube were unity,
the cross-sectional area of the element would be constant, dA/dt would
be zero, and the normal and the binormal tapers would be opposite and
equal (F = -Tb). At a Mach number of 1 behind the shock wave, however,
d5/do is almost equal to zero for a perfect gas and the distance F isg
not equal to -Tp. 1In fact, F 1is greater than -Ty. In order, there-
fore, for the taper in the plane of the normal to have the correct value
of

_ J
-Tp = sin &

the streamline must have an initial concave curvature at the shock wave,
as shown in figure 12. The initial tangent on one side of the stream
tube and the tangent at the opposite point of the stream tube, which is
at a distance dt from the shock wave, are extended and intersect at
the taper distance T,. For a Mach number of 1 the requirement is,
therefore, that

Ty = -Tp
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and the streamlines must have a curvature to meet this requirement. 1In
the general case, also, of Mach number other than unity, the envelope

distance given by

at the shock wave is not the correct taper in the plane of the normal,
but is either too large or too small, and the streamline must have an
initial concave or convex curvature. The component of taper in the
meridian plane is defined by a different pair of tangents from the ini-
tial tangents. The taper is always Tp, as shown, but in the general

case Ty 1is not equal to -Ty.

The relation between the radius of curvature R and the taper
distance T, can be obtained from figure 12, as follows: © varies

both along ¢ and along t. The angle subtended by 4t is %% dat.
The angle subtended by dn is - %% do + %% dt. The two triangles
with %% dt as vertex angle are similar, therefore
dad
at dn+Tna—UdU an
R Tn Ty
or
1. o8y L _p) B
5= tan(e - B) T + sec(e 5) T
This relation can now be used to obtain the relation between 1/R and
0 log A
3t

Equation (A6) can now be rewritten as

1 _1_1___dr ,sind
T, T Ty A at Yy

Therefore

=~

tan(e - &) <A—g€ + Si; 8) + sec(€ - ) %%

tan(e - &) [;‘gﬁ + Si? 5 + csc(e - B) %%] (AT)
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Equation (A7) is the relation between 1/R and é—%%g—é that was
» needed to obtain another relation between the pressure derivatives by

using equations (A3) and (A4). If 1/R as given by equation (A7) is
substituted in equation (AL), then

d log p ) sin & dA dd
o L - _yMtan(e - & - - d) = 8
S . n( ) 5 3 + csc(e ) T (A8)

d log A

If
ot

is eliminated between equations (A8) and (A3), then

o logp _ -yMetan(e - ) sin d M - 13 logp + csc(e - 8) s
on y M2 3t do

(19)

Solution of equations (A5) and (A9) for the two rates of change of pres-
sure gilves

¢ J log p _ yMetan® (e - B) sin & , _1 cot(e - 8) d log p N
ot 1 - (@ - 1tan(e -8)| ¥ M sin(e - 8) do
dd
csc(e - S)d%]
- - 2
) ;og P _ yMetan( ¢ 26) sin 8 M 1 sec(e - B) d log p
n 1- (F - Dtan®(c-8) | Y N do

dal
- 8)&e
csc(e )

By use of the relations

n=ysecb?d

=
"
Q1Q
miQ

and

o
Q

- e

Kl BI&
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the pressure derivatives can be written

o logp _ 7M?tan2(€ -‘6) tan B +
%} 1 - (M? - l)tang(e - 3)
1 n cot(e -58) 0 logp N EL.Y c_ 5 38 A10)
M Ry sin(e - 8) o€ r, oocle - 5 (
o log p _ ~yMtan(e - B) fan 5 +

dlogn p _ (M2 - 1)tan2(€ - B)

f_—@l f?,; sec(e - 8) ?__:BL_‘:S_E + -I?—W csc(e - 5)%—2] (A11)
. _

The next step is to find the direction in which dp 1s zero. This
direction is that along which the components of the tangential and the
normal pressure derivatives are equal in magnitude and opposite in sign.
If ep is the angle between this direction and the x-axis, then

tan (6, - &) is given by the ratio of ologp 4, -0108D muererore

ot on
EE sin(e¢ - &) sin & + L cot(e - 8) o log p + els}
tan(ep - 8) Y y de d€
tan(c - 8) Eyw— sin(e - &) sin & + —M-?-;;d—gl- tan(e - ) aa%g + %2_
(A12)

The problem that has been solved herein for axially symmetric flow
has previously been solved by Lin and Rubinov (reference 6) for plane
flow. Reference 6 also gives the fundamental equations for conservation
of mass, momentum, and energy in axially symmetric flow. As a check on
the results obtained in the present paper, equations (A1l0) and (All),
the present authors have done the following: By starting with the
fundamental conservation equations for axially symmetric flow as given
in reference 6, and by using only algebraic manipulation, as was used
in reference 6 for the plane case, expressions for the two pressure
derivatives were obtained. These expressions were identical with those
derived in the present paper as equations (A10) and (All).
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The expressions for pressure derivatives are converted into
expressions for density and Mach number derivatives by taking into
account changes in entropy:

AS/c
p=e¢ /ey p”
log p = 28 7 log o
c
v
But
Therefore

logp=-(r -1) log IT + 7 log p

dlogp_101logp Lr-1 o log II

3 7 dt Y dt
Tangent to a streamline, é_%gg_EE is zero. Therefore
2
d log p _ Mtan® (¢ - 8) ten B 4

%ﬁ 1 - (M? - l)tan2(€ - 8)

1 n cot(e - 8) O log p + B csc(e - 8) 9% (A13)
M R, sin(e - 8) e " Ry o
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Normal to a streamline,

d logp_10logp Lr-=1 d log TT
dlogn 70 logn 7 Odlogn
_101logp L2-=1 csc(e - 8) L 0 log II
7 d logn 4 R, O¢€

= - M?tan(e - 8) tan & + M - 1z sec(e - 8) §_%2§_2 +
1- (Ff - 1)tan® (¢ - 5) N €
I S5y B y2=1n _p) Qlog II
R csc(e - B) aé] + = R csc(€e - B) Yy (A1k) .

Equations (Al13) and (Alk) give the density derivatives tangent and
normal to a streamline. Figure 13 shows the variation of the two deri-
vatives with x/D.
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figure 5. The value of n 1is given by n = y sec &. The value of M
was obtalned from the equation

2 - csc2(e 5 2+ (y - 1) Mbgsinge

27Mb25in2e - (y - 1)

and the value of &, from the equation

Yy + 1 o)
— Y
cot & = tan ¢ -1 (A17)

Moasinze -1

From the theory of oblique shock waves, furthermore,

2.2 Moesinee _r-t (A18)
- Po y + 1 vy + 1
. Ak X A
v+ 171 M,2sin®e 7-1 1 7-1
II = < 5 (A19)
1+ Z;é_l Mogsinze 7M02sin26 - —

The derivatives with respect to ¢ that appear in equations (Alk4)
to (Al6) were found by differentiating equations (Al7) to (Al9):

(y + 1)Mbusin26 (Z;i;lg 2sec?

dd . 2 2 o)
82 = 5in<d - + secce
de (M2sinfe - 1)2  MPsin?e - 1
2y 2sin ¢ cOs
d log p _ Mo €
de 7Mo2sin2e _7 5 1
d log IT = 2y Mogsin € COs € 1 - L -
. 7y -1
1
2 -
- MoPsinZe - L2 1

2
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APPENDIX B
DETERMINATION OF STREAMLINES AND FLOW VARIABLES FROM DENSITY

The flow field behind the curved shock wave (fig. 2) is rotational.
The variation in the slope of the shock wave is known (fig. 3), however,
as is the density in the flow field (fig. 6). The problem is to deter-
mine, from these known quantities, the streamlines and the values of
flow variables other than density. The method that was used was to
choose an element of arc on the shock wave, to calculate the average
change in stagnation density across the element of arc, and then to con-
struct the stream tube step by step in such a way that continuity was
satisfied. The cross-sectional area of an annular stream tube is

A = 2ny An
Continuity requires that the equation

Po VYo (A1) 4

An =
y oV

be satisfied. The velocity V can be expressed in terms of density and
Mach number by means of the equation

in which as/a is given by

s - (1 + L2 M?)l/e

in which ag is a constant and in which M 1is given by

L
Py _ 7y -1 o\7-1
- = <? + > bd)

where pg 1is a function of the shock-~wave angle and free-stream con-
ditions. The quantity y An can consequently be expressed in terms
of known quantities in the free stream, the shock-wave angle, and den-
sity behind the shock wave at An.

If one side of a stream tube is known, the other side can be
located. First, the other side is drawn approximately. Then, the
center line of the stream tube is drawn approximately. With the known
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value of density and the measured value of y at the intersection of
the center line and a known contour of constant p/po, the value of An
is calculated. Then a line perpendicular to the center line is drawn
through the point. Where this line intersects the known side of the
stream tube, the value of y 1is measured. One half of the vertical
projection of the calculated An 1is added to this value of y to give

a closer approximation of y for recalculating An. The new An is
used to obtain a better approximation for y and so on until the process
converges.

The procedure was to obtain first the stream tube adjacent to the
axis of symmetry and the surface of the sphere. The other stream tubes
vere than located by applying to each in turn the process described. A
check which showed that any cumulative errors were negligibly small was
the fact that the method gave deflection angles of the streamlines at
the shock wave that agreed well with the theoretical wvalues.
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Figure 1.- Interferogram of flow around sphere at Mach number 1.62.
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Figure 6.- Contours of constant ratio of density to free-stream density
obtained from interferogram. (From fig. 5(b) of reference 13.)
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Figure 9.- Streamlines and contours of constant Mach number derived from

continuity and contours of constant density.
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(a) Contours of constant ratio of density to free-stream density.

Figure 10.- Results obtained by method of characteristics and by interferometry.
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Figure 10.- Continued.
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